31,755 research outputs found

    Development and flight evaluation of active controls in the L-1011

    Get PDF
    Active controls in the Lockheed L-1011 for increased energy efficiency are discussed. Active wing load alleviation for extended span, increased aspect ratio, and active stability augmentation with a smaller tail for reduced drag and weight are among the topics considered. Flight tests of active wing load alleviation on the baseline aircraft and moving-base piloted simulation developing criteria for stability augmentation are described

    The effects of arbuscular mycorrhizal fungi (AMF) and Rhizophagus irregularis on soil microorganisms assessed by metatranscriptomics and metaproteomics

    No full text
    Arbuscular mycorrhizal fungi (AMF) form symbioses with approximately 80% of plant species and potentially benefit their hosts (e.g. nutrient acquisition) and the soil environment (e.g. soil aggregation). AMF also affect soil microbiota and soil multifunctionality. We manipulated AMF presence (via inoculation of non-sterile soil with Rhizophagus irregularis and using a hyphal compartment design) and used RNA-seq and metaproteomics to assess AMF roles in soil. The results indicated that AMF drove an active soil microbial community expressing transcripts and proteins related to nine metabolic functions, including the metabolism of C and N. We suggest two possible mechanisms: 1) the AMF hyphae produce exudates that select a beneficial community, or, 2) the hyphae compete with other soil microbes for available nutrients and consequently induce the community to mineralize nutrients from soil organic matter. We also identified candidate proteins that are potentially related to soil aggregation, such as Lpt and HSP60. Our results bridge microbial ecology and ecosystem functioning. We show that the AMF hyphosphere contains an active community related to soil respiration and nutrient cycling, thus potentially improving nutrient mineralization from soil organic matter and nutrient supply to the plants

    The evolution of the moon and the terrestrial planets

    Get PDF
    The thermal evolutions of the Moon, Mars, Venus and Mercury are calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical and geophysical data are used to constrain both the present day temperatures and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. The moon, smallest in size, is characterized as a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. Mars, intermediate in size, is assumed to have differentiated an Fe-FeS core. Venus is characterized as a planet not unlike the earth in many respects. Core formation has occurred probably during the first billion years after the formation. Mercury, which probably has a large core, may have a 500 km thick solid lithosphere and a partially molten core if it is assumed that some heat sources exist in the core

    Airtightness of buildings — towards higher performance: Final Report — Domestic Sector Airtightness

    Get PDF
    This report constitutes milestone D11 — Final Report — Domestic Sector Airtightness of the Communities and Local Government/ODPM Project reference CI 61/6/16 (BD2429) Airtightness of Buildings — Towards Higher Performance (Borland and Bell, 2003). This report presents the overall conclusions and key messages obtained from the project through design assessments, construction observations, discussions with developers and pressurisation test results. It also summarises discussion on the airtight performance of current UK housing, the implementation and impact of current and future legislation, and identifies potential areas for future work

    Potts Models with (17) Invisible States on Thin Graphs

    Full text link
    The order of a phase transition is usually determined by the nature of the symmetry breaking at the phase transition point and the dimension of the model under consideration. For instance, q-state Potts models in two dimensions display a second order, continuous transition for q = 2,3,4 and first order for higher q. Tamura et al recently introduced Potts models with "invisible" states which contribute to the entropy but not the internal energy and noted that adding such invisible states could transmute continuous transitions into first order transitions. This was observed both in a Bragg-Williams type mean-field calculation and 2D Monte-Carlo simulations. It was suggested that the invisible state mechanism for transmuting the order of a transition might play a role where transition orders inconsistent with the usual scheme had been observed. In this paper we note that an alternative mean-field approach employing 3-regular random ("thin") graphs also displays this change in the order of the transition as the number of invisible states is varied, although the number of states required to effect the transmutation, 17 invisible states when there are 2 visible states, is much higher than in the Bragg-Williams case. The calculation proceeds by using the equivalence of the Potts model with 2 visible and r invisible states to the Blume-Emery-Griffiths (BEG) model, so a by-product is the solution of the BEG model on thin random graphs.Comment: (2) Minor typos corrected, references update
    • …
    corecore